Introduction to Graph

Graphs
1. Basic definitions

e Graph G =(V, E) where V is a set of vertices and E is a set of edges. Each edge e € E is a 2-tuple of
the form (v, w) where v, w € V, and ¢ is called an incident on v and w.

O ey V=1{0,1,2 3 4
é)/(@ E = ((0. 1), (1, 2). (1, 3), (1. 4),
(2,3), (3, 4), (4, 0}
_

e An edge may be directed or undirected.
e An edge may also have a weight.
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Directed, unweighted Directed, weighted

e A path is a sequence of vertices connected by edges, and represented as a sequence in 2 ways:
o (Vg, €1, V], €2, V2,..,Vp-1> €p» Vp) -- alternating vertices and edges

o (Vg, V], V2,..,Vy1, V) -- vertices only
e A graph is connected if, for any vertices v and w, there is a path from v to w.
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An unconnected graph

2. Representing Graphs

¢ Adjacency matrix
o n by n matrix, where n is number of vertices
o A(m,n) =1 iff (m,n) is an edge, or 0 otherwise
o For weighted graph: A(m,n) = w (weight of edge), or positive infinity otherwise
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e Adjacency list
o Each vertex has a linked list of edges
o Edge stores destination and label
o Better when adjacency matrix is sparse

— e 1 twd]]
s IPHEC EEIE U ERE

Nea
NGRS

— el 1020 T 40T
ek ENE ETH

— w203
.

3. Graph Traversal

e Walk through a graph systematically in a predefined order -- Depth-first, or Breadth-first.

3.1 Depth-First Traversal

e Follow a path until it ends, or until a cycle. Use a stack.

Start vertex =0

'}@ Azaume vertex with smmaller label 12 wizited first.
(?g *Depthfirst: 01,3, 4, 2

e Algorithm:

Let G = (V, E) is a graph which is represented by an adjacency matrix Adj. Assume that nodes in a
graph record visited/unvisited information.

procedure DEPTH-FIRST (G)

1. Initialize all vertices as "unvisited".
2. Let S be a stack.

3. Push the root on S.



4. While S not empty, do
5 begin

6. Let n <- Pop S.

7 If n is marked as
8. begin

9. Mark n as

10.

11. If v is marked
12. push v on S.
13. end

14. end
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3.2 Breadth-First Traversal
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"visited", and output n to the terminal.
For each vertex v in Adj[n], do
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e Visit nodes layer-by-layer. Use a queue.

then // this test is actually redundant



@ Start vertex =100
/ Assume vertex with smaller label 15 visited first.
(?é‘ _Breadth-first: 0,1,2, 3,4

e Algorithm :

procedure BREADTH-FIRST (G)

1. Initialize all vertices as "unvisited".
2. Let Q be a queue.

3. Enqueue the root on Q.

4. While Q not empty, do

5. begin

6. n <- Dequeue Q.

7. If n is marked as "unvisited", then
8. begin

9. Mark n as "visited", and output n to the terminal.
10. For each vertex v in Adj[n], do
11. If v is marked "unvisited", then
12. enqueue v on Q.

13. end

14. end

4. Graph Search

e Two search methods corresponding to the two traversal schemes above: Depth-First Search (DFS) and
Breadth-First Search (BFS).
e Terminate search/traversal as soon as the item is found.

5. Minimum Spanning Trees (MST)

¢ A minimum spanning tree T of an undirected graph G is a subgraph of G that connects all the
vertices in G at the lowest total cost.
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e MST is used as one of the most important tools to analyze computer networks (e.g. cabling, network
load capacity, optimal flow).

e Two algorithms: Prim's algorithm and Kruskal's algorithm.

e They are both greedy algorithms.

6.1 Prim's Algorithm

e Maintains ONE TREE throughout the algorithm, and make it grow by adding edge by edge.
e The idea is to select the next edge



o which is adjacent from any vertex/node in the tree built so far; and
o which has the lowest weight among alternatives (i.e., all edges connected from any vertex/node
in the tree built so far).

e Algorithm:
Let G = (V, E) which is represented by an adjacency list Adj. Some support data structures:

o dis an array of size |V|. Each d[i] contains the shortest distance for vertex i
o Q is a priority queue of UNKNOWN vertices.

o pis an array of size |V|. Each P[i] contains the parent of vertex 1.

o s is the source vertex.

PRIM(G, s)
1. Initialize d[s] with @, P[s] with @, and
all other d[i] (i!=s) with a positive infinity and
p[i] (i'=s) with o.

2. Q <-V // initialize Q with all vertices as UNKNOWN

3. while Q not empty do

4. begin

5. u <- ExtractMin(Q) // Q is modified

6. Mark u as KNOWN // Dequeing u is the same as marking it as KNOWN
7. for each vertex v in Adj[u] do

8. begin

9. if v is UNKNOWN and d[v] > weight(u, v), then do

10. begin

11. d[v] = weight(u, v) // update with shorter weight
12. p[v] = u // update v's parent as v

13. end

14. end

15. end

e Example (NOTE: vO0 is the source vertex, and d[i] for each vertex i is also indicated in its circle):
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6.2 Kruskal's Algorithm
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e The main idea is to
o start with a set (called forest) of singleton trees, and
o merge two trees at a time, unless it creates a cycle in the merged tree, until the forest becomes
one tree.
e The algorithm makes use of notions such as forest and union-find algorithm. But even without
knowing them, you can intuitively understand Kruskal's algorithm quite easily.
e Algorithm:

Let G = (V, E) which is represented by an adjacency list Adj. Some support data structures:
o F is the forest -- a set of all (partial) trees.

o MST is the minimum spanning tree, represented by a set of edges.
o Qis a priority queue of edges.

KRUSKAL (G)

1. Let F be a set of singleton set of all vertices in G.

2. MST <- {}

3. Q <- E

4. while Q not empty do

5. (u, v) <- ExtractMin(Q) // Q is modified

6. if FIND-SET(u) != FIND-SET(v) then // FIND-SET(i) returns the set in F

// which vertex i belongs to.
// This effectively does cycle check.
// If ACCEPTED,

7. begin

8. merge (FIND-SET(u),FIND-SET(v)) in F
9. MST <- MST Union {(u, v)}

10. end

11. return MST.

NOTE: In the figure below, a number in a vertex indicates the vertex number (NOT any kind of value).
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(3) (75,74 = ExtractMin(Q) -- ACCEPTED
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(?2,1?3) =Extracthdin{ () --
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MSET = {{wy,vy), (v, o), (¥2,74),
Q= {(v.vg), (v1.v4)}
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The algorithm continues until Q becomes empty, but since
the forest has become one tree, all remaining edgesin O
will ke rejected and nono change will happen to MET.
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