
Introduction to Graph

Graphs

1. Basic definitions

Graph G = (V, E) where V is a set of vertices and E is a set of edges. Each edge e Î E is a 2-tuple of
the form (v, w) where v, w Î V, and e is called an incident on v and w.

An edge may be directed or undirected.
An edge may also have a weight.

A path is a sequence of vertices connected by edges, and represented as a sequence in 2 ways:
(v0, e1, v1, e2, v2,..,vn-1, en, vn) -- alternating vertices and edges
(v0, v1, v2,..,vn-1, vn) -- vertices only

A graph is connected if, for any vertices v and w, there is a path from v to w.

2. Representing Graphs

Adjacency matrix
n by n matrix, where n is number of vertices
A(m,n) = 1 iff (m,n) is an edge, or 0 otherwise
For weighted graph: A(m,n) = w (weight of edge), or positive infinity otherwise

Adjacency list
Each vertex has a linked list of edges
Edge stores destination and label
Better when adjacency matrix is sparse

3. Graph Traversal

Walk through a graph systematically in a predefined order -- Depth-first, or Breadth-first.

3.1 Depth-First Traversal

Follow a path until it ends, or until a cycle. Use a stack.

Algorithm:

Let G = (V, E) is a graph which is represented by an adjacency matrix Adj. Assume that nodes in a
graph record visited/unvisited information.

procedure DEPTH-FIRST (G)
1. Initialize all vertices as "unvisited".
2. Let S be a stack.
3. Push the root on S.

4. While S not empty, do
5. begin
6. Let n <- Pop S.
7 If n is marked as "unvisited", then
8. begin
9. Mark n as "visited", and output n to the terminal.
10. For each vertex v in Adj[n], do
11. If v is marked as "unvisited", then // this test is actually redundant
12. push v on S.
13. end
14. end

3.2 Breadth-First Traversal

Visit nodes layer-by-layer. Use a queue.

Algorithm :

procedure BREADTH-FIRST (G)
1. Initialize all vertices as "unvisited".
2. Let Q be a queue.
3. Enqueue the root on Q.
4. While Q not empty, do
5. begin
6. n <- Dequeue Q.
7. If n is marked as "unvisited", then
8. begin
9. Mark n as "visited", and output n to the terminal.
10. For each vertex v in Adj[n], do
11. If v is marked "unvisited", then
12. enqueue v on Q.

13. end
14. end

4. Graph Search

Two search methods corresponding to the two traversal schemes above: Depth-First Search (DFS) and
Breadth-First Search (BFS).
Terminate search/traversal as soon as the item is found.

5. Minimum Spanning Trees (MST)

A minimum spanning tree T of an undirected graph G is a subgraph of G that connects all the
vertices in G at the lowest total cost.

MST is used as one of the most important tools to analyze computer networks (e.g. cabling, network
load capacity, optimal flow).
Two algorithms: Prim's algorithm and Kruskal's algorithm.
They are both greedy algorithms.

6.1 Prim's Algorithm

Maintains ONE TREE throughout the algorithm, and make it grow by adding edge by edge.
The idea is to select the next edge

which is adjacent from any vertex/node in the tree built so far; and
which has the lowest weight among alternatives (i.e., all edges connected from any vertex/node
in the tree built so far).

Algorithm:

Let G = (V, E) which is represented by an adjacency list Adj. Some support data structures:

d is an array of size |V|. Each d[i] contains the shortest distance for vertex i
Q is a priority queue of UNKNOWN vertices.
p is an array of size |V|. Each P[i] contains the parent of vertex i.
s is the source vertex.

PRIM(G, s)
1. Initialize d[s] with 0, P[s] with 0, and
 all other d[i] (i!=s) with a positive infinity and
 p[i] (i!=s) with 0.
2. Q <- V // initialize Q with all vertices as UNKNOWN
3. while Q not empty do
4. begin
5. u <- ExtractMin(Q) // Q is modified
6. Mark u as KNOWN // Dequeing u is the same as marking it as KNOWN
7. for each vertex v in Adj[u] do
8. begin
9. if v is UNKNOWN and d[v] > weight(u, v), then do
10. begin
11. d[v] = weight(u, v) // update with shorter weight
12. p[v] = u // update v's parent as v
13. end
14. end
15. end

Example (NOTE: v0 is the source vertex, and d[i] for each vertex i is also indicated in its circle):

6.2 Kruskal's Algorithm

The main idea is to
start with a set (called forest) of singleton trees, and
merge two trees at a time, unless it creates a cycle in the merged tree, until the forest becomes
one tree.

The algorithm makes use of notions such as forest and union-find algorithm. But even without
knowing them, you can intuitively understand Kruskal's algorithm quite easily.
Algorithm:

Let G = (V, E) which is represented by an adjacency list Adj. Some support data structures:

F is the forest -- a set of all (partial) trees.
MST is the minimum spanning tree, represented by a set of edges.
Q is a priority queue of edges.

KRUSKAL(G)
1. Let F be a set of singleton set of all vertices in G.
2. MST <- {}
3. Q <- E
4. while Q not empty do
5. (u, v) <- ExtractMin(Q) // Q is modified
6. if FIND-SET(u) != FIND-SET(v) then // FIND-SET(i) returns the set in F
 // which vertex i belongs to.
 // This effectively does cycle check.
 // If ACCEPTED,
7. begin
8. merge(FIND-SET(u),FIND-SET(v)) in F
9. MST <- MST Union {(u, v)}
10. end
11. return MST.

NOTE: In the figure below, a number in a vertex indicates the vertex number (NOT any kind of value).

